$\gamma = 86.049 \ (1)^{\circ}$

Z = 2

V = 1426.14 (5) Å³

Mo $K\alpha$ radiation

 $0.17 \times 0.13 \times 0.11 \text{ mm}$

10097 measured reflections

4496 independent reflections

4014 reflections with $I > 2\sigma(I)$

 $\mu = 3.04 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.059$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[tetraaquabis(μ_3 -pyridine-2,6dicarboxylato)(μ_2 -pyridine-2,6dicarboxylato)dilanthanum(III)] dihydrate]

Shie Fu Lush^a and Fwu Ming Shen^b*

^aDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan, and ^bDepartment of Biotechnology, Yuanpei University, No. 306 Yuanpei St, HsinChu 30015 Taiwan

Correspondence e-mail: fmshen@mail.ypu.edu.tw

Received 11 July 2011; accepted 1 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; R factor = 0.045; wR factor = 0.126; data-to-parameter ratio = 11.3.

There are two independent La^{III} cations in the polymeric title compound, $\{[La_2(C_7H_3NO_4)_3(H_2O)_4]\cdot 2H_2O\}_n$. One is ninecoordinated in an LaN₂O₇ tricapped trigonal-prismatic geometry formed by three pyridine-2,6-dicarboxylate anions and two water molecules, while the other is ten-coordinated in an LaNO₉ bicapped square-antiprismatic geometry formed by four pyridine-2,6-dicarboxylate anions and two water molecules. The two La^{III} cations are separated by a non-bonding distance of 5.026 (3) Å. The pyridine-2,6-dicarboxylate anions bridge the La^{III} cations, forming a three-dimensional polymeric complex. The crystal structure contains extensive classical $O-H \cdots O$ hydrogen bonds and weak intermolecular C-H···O hydrogen bonds. The crystal structure is further consolidated by $\pi - \pi$ stacking between pyridine rings, the shortest centroid-centroid distance between parallel pyridine rings being 3.700 (5) Å.

Related literature

For applications of lanthanide metal carboxylate systems in supramolecular chemistry and functional materials, see: Yang *et al.* (2011); Chantal *et al.* (2008). For similar structures, see: Brouca *et al.* (2002); Ghosh & Bharadwaj (2004).

Experimental

Crystal data

$$\begin{split} & [\text{La}_2(\text{C}_7\text{H}_3\text{NO}_4)_3(\text{H}_2\text{O})_4]\cdot\text{2H}_2\text{O} \\ & M_r = 881.23 \\ & \text{Triclinic, } P\overline{1} \\ & a = 10.4910 \ (2) \text{ Å} \\ & b = 10.9197 \ (2) \text{ Å} \\ & c = 13.0850 \ (3) \text{ Å} \\ & \alpha = 77.915 \ (1)^\circ \\ & \beta = 76.702 \ (1)^\circ \end{split}$$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{min} = 0.592, T_{max} = 0.699$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 398 parameters $wR(F^2) = 0.126$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 3.36$ e Å $^{-3}$ 4496 reflections $\Delta \rho_{min} = -1.06$ e Å $^{-3}$

Table 1

Selected bond lengths (Å).

La1-N1	2.644 (5)	La2-O3	2.674 (5)
La1-N2 ⁱ	2.728 (6)	La2-O4	2.605 (5)
La1-O1	2.502 (5)	La2-O5	2.865 (6)
La1-O3	2.614 (5)	La2-O6	2.591 (5)
La1-O8 ⁱ	2.575 (5)	La2-O6 ⁱⁱⁱ	2.615 (5)
La1-O11 ⁱ	2.578 (5)	La2-O7	2.524 (5)
La1-O11 ⁱⁱ	2.600 (5)	La2-O10 ⁱⁱⁱ	2.539 (5)
La1-O13	2.593 (5)	La2-O15	2.574 (5)
La1-O14	2.525 (5)	La2-O16	2.575 (6)
La2-N3 ⁱⁱⁱ	2.688 (6)		

Symmetry codes: (i) -x + 1, -y, -z; (ii) x, y, z + 1; (iii) -x + 1, -y + 1, -z.

Table 2

Hydrogen-bond	geometry	(A,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O13−H13A····O5	0.85	2.04	2.766 (8)	143
$O13-H13B\cdots O1^{iv}$	0.85	1.91	2.721 (7)	160
$O14-H14A\cdots O5$	0.97	2.23	3.062 (8)	143
$O14-H14B\cdots O9^{v}$	0.83	2.44	3.225 (10)	160
$O14 - H14B \cdots O10^{v}$	0.83	2.22	2.712 (8)	119
$O15-H15A\cdots O7^{iii}$	0.85	2.14	2.948 (8)	160
$O15-H15B\cdots O12^{ii}$	0.85	2.16	2.849 (7)	138
O16-H16AO8	0.85	2.12	2.760 (8)	132
$O16-H16B\cdots O17^{iii}$	0.85	2.05	2.843 (15)	155
$O17 - H17A \cdots O9^{vi}$	0.82	2.13	2.816 (17)	141
$O17 - H17B \cdots O9^{vii}$	0.82	2.39	2.758 (15)	108
$O18-H18A\cdots O2^{viii}$	0.82	2.31	2.75 (2)	114
$O18-H18B\cdots O18^{ix}$	0.88	2.46	2.89 (3)	110
$C11 - H11 \cdots O2^{x}$	0.93	2.45	3.320 (11)	155
$C12-H12\cdots O18^{xi}$	0.93	2.51	3.36 (2)	152

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

This work was supported financially by Yuanpei University, Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5269).

References

- Brouca, C. C., Fernandes, A., Jaud, J. & Costes, J. P. (2002). *Inorg. Chim. Acta*, **332**, 54–60.
- Chantal, B. C., Jeannette, D. G., Auguste, F., Joel, J. & Jean, C. T. (2008). Inorg. Chim. Acta, 361, 2909–2917.
- Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293-2298.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yang, L.-R., Song, S., Shao, C.-Y., Zhang, W., Zhang, H.-M., Bu, Z.-W. & Ren, T.-G. (2011). *Synth. Met.* In the press.

Acta Cryst. (2011). E67, m1195-m1196 [doi:10.1107/S1600536811030807]

$\label{eq:poly} Poly[[tetraaquabis(\mu_3-pyridine-2,6-dicarboxylato)(\mu_2-pyridine-2,6-dicarboxylato)dilanthanum(III)] dihydrate]$

S. F. Lush and F. M. Shen

Comment

Pyridine-2,6-dicarboxylic acid (pydH₂) and its deprotonated anion behave as multifunctional ligands to act as bridging ligands in metal complexes with five coordination sites involving the oxygen atoms of the carboxylate groups and the nitrogen atom of the pyridine ring. In recent years, the chemistry of lanthanide metal carboxylate systems is of great interest because of their extensive usage in supramolecular chemistry and functional materials (Brouca *et al.* 2002; Ghosh *et al.* 2004; Yang *et al.* 2011; Chantal *et al.* 2008). Here, we report a new La^{III} complex with pyridine-2,6-dicarboxylic acid, [[La₂(pyd)₃(H₂O)₄].2H₂O]_n, from hydrothermal reaction.

The structure of the title compound is shown as Fig 1. There are two independent La^{III} ions where La(1) is nine coordinated with N₂O₇ donors sets to form tricapped trigonal prism geometries, where La(2) is ten coordinated with NO₉ donor sets to from bicapped square antiprisms geometries. The selected bond lengths (Å) of title compound are listed in Table 2. The La^{III}—O and La^{III}—N distances are similar to those found in other La^{III} complex (Brouca, *et al.*2002; Ghosh, *et al.* 2004). The bond distances and bond angles in the ligand moiety are within normal ranges.

The structure consists of two types of ligand-binding modes contributing to link the LaO₅N₂(H₂O)₂ and LaO₇N(H₂O)₂ polyhedral chains to three-dimensional network. This network can be described in terms of a 20-membered ring related to each other by the intermediate C8 carboxylate group. It results in a La1—La1 distance equal to 4.440 (1) Å. A projection of one 20-membered ring along *x* axis is shown in Fig. 2. Rings built from eight lanthanum atoms can be seen. In these rings, long La—La distances are found:La1—La2 = 6.190 (3) Å through C8 carboxylate group of pda1, La1—La2 =5.026 (3) Å through C7 carboxylate group of pda2. The La2—La2 distance through theµ-O6 atom is apart from the others with the shortest value of 4.514 (2) Å.

In the title crystal structure stabilized *via* O—H···O and weak C—H···O hydrogen bonds (Fig.3) (full details and symmetry codes are given in Table 3). The π - π stacking interaction is also observed, the centroid···centroid distance between the parallel aryl ring being 3.969 (4)Å and 3.700 (5) Å [*Cg*2^{vi}···*Cg*2(N2/C9—C13), *Cg*3^{vii}···*Cg*3(N3/C16—C20)] (symmetry code: (vi)1-*X*, 1-Y, 1-*Z*,(vii) 2-*X*, 1-Y, -*Z*). C1—O2···*Cg*1^{viii}((N1/C2—C6) is 3.892 (6) Å((viii) –*X*, -Y, 1-*Z*).

Experimental

LaCl_{3.6H₂O (0.0899 g, 0.25 mmol), pydridine-2,6-dicarboxylic acid (0.0418 g, 0.25 mmol) and 1,2-bis(4-pyridyl)ethane were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflon-lined reactor, heated at 453 K for 72 h, then cooled slowly to room temperature. The colorless transparent single crystals of the title compound were obtained in 35.10% yield (based on La).}

Refinement

Water H atoms were placed in chemical sensible positions and $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically with C—H = 0.93 Å, and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. The precise of the structure is low.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity [symmetry code:(i) x, y, z + 1; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z].

Fig. 3. The molecular packing for the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

$Poly[[tetraaquabis(\mu_3-pyridine-2,6-dicarboxylato)(\mu_2-pyridine-2,6-dicarboxylato)dilanthanum(III)] dihydrate]$

Crystal data	
[La ₂ (C ₇ H ₃ NO ₄) ₃ (H ₂ O) ₄]·2H ₂ O	Z = 2
$M_r = 881.23$	F(000) = 852
Triclinic, <i>P</i> T	$D_{\rm x} = 2.052 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.4910 (2) Å	Cell parameters from 11712 reflections
<i>b</i> = 10.9197 (2) Å	$\theta = 2.0 - 25.4^{\circ}$
c = 13.0850 (3) Å	$\mu = 3.04 \text{ mm}^{-1}$
$\alpha = 77.915 \ (1)^{\circ}$	T = 293 K
$\beta = 76.702 \ (1)^{\circ}$	Prism, colorless
$\gamma = 86.049 (1)^{\circ}$	$0.17 \times 0.13 \times 0.11 \text{ mm}$
V = 1426.14 (5) Å ³	

Data collection

Nonius KappaCCD diffractometer	4496 independent reflections
Radiation source: fine-focus sealed tube	4014 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.059$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 24.2^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
$\omega/2\theta$ scans	$h = -12 \rightarrow 11$
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)	$k = -12 \rightarrow 12$
$T_{\min} = 0.592, \ T_{\max} = 0.699$	$l = -14 \rightarrow 15$
10097 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0734P)^2 + 6.7391P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
4496 reflections	$\Delta \rho_{max} = 3.36 \text{ e } \text{\AA}^{-3}$
398 parameters	$\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=KFc[1+0.001Fc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0024 (7)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Lal	0.44785 (3)	-0.02327 (3)	0.35019 (3)	0.0209 (2)
La2	0.41829 (4)	0.30745 (3)	0.02503 (3)	0.0252 (2)
01	0.3054 (5)	-0.1677 (5)	0.5004 (4)	0.0337 (17)

O2	0.1185 (5)	-0.2630 (5)	0.5862 (5)	0.0492 (19)
O3	0.3593 (4)	0.1173 (4)	0.1926 (4)	0.0272 (16)
O4	0.1922 (5)	0.2287 (5)	0.1428 (4)	0.0399 (17)
O5	0.6510 (6)	0.2726 (5)	0.1081 (5)	0.0463 (19)
O6	0.6152 (5)	0.4494 (4)	0.0013 (4)	0.0328 (17)
O7	0.5246 (5)	0.3575 (5)	-0.1722 (4)	0.0356 (17)
O8	0.5833 (5)	0.1871 (4)	-0.2427 (4)	0.0319 (17)
09	0.9032 (7)	0.8529 (6)	0.0852 (8)	0.081 (3)
O10	0.7051 (5)	0.8128 (5)	0.0666 (4)	0.0393 (17)
O11	0.3996 (4)	0.0804 (4)	-0.4828 (4)	0.0262 (14)
O12	0.3094 (5)	0.2114 (5)	-0.6006 (4)	0.0374 (17)
O13	0.5983 (5)	0.1647 (5)	0.3240 (4)	0.0423 (17)
O14	0.6366 (5)	-0.0113 (5)	0.1893 (4)	0.0446 (17)
O15	0.3833 (7)	0.3857 (5)	0.2021 (4)	0.051 (2)
O16	0.5634 (7)	0.1192 (5)	-0.0243 (5)	0.053 (2)
N1	0.1958 (5)	-0.0293 (5)	0.3519 (4)	0.0275 (17)
N2	0.4329 (5)	0.2539 (5)	-0.3812 (4)	0.0236 (17)
N3	0.7679 (6)	0.5744 (5)	0.0726 (5)	0.0294 (17)
C1	0.1846 (7)	-0.1889 (7)	0.5121 (6)	0.032 (2)
C2	0.1188 (7)	-0.1139 (6)	0.4260 (6)	0.031 (2)
C3	-0.0104 (8)	-0.1294 (8)	0.4229 (7)	0.049 (3)
C4	-0.0596 (8)	-0.0556 (10)	0.3409 (8)	0.061 (3)
C5	0.0167 (8)	0.0337 (9)	0.2682 (7)	0.048 (3)
C6	0.1450 (7)	0.0440 (7)	0.2754 (6)	0.029 (2)
C7	0.2362 (7)	0.1378 (6)	0.1992 (5)	0.028 (2)
C8	0.5249 (7)	0.2914 (7)	-0.2401 (6)	0.031 (2)
С9	0.4483 (7)	0.3385 (7)	-0.3250 (6)	0.029 (2)
C10	0.3945 (8)	0.4592 (7)	-0.3418 (6)	0.041 (3)
C11	0.3248 (10)	0.4928 (8)	-0.4212 (8)	0.057 (3)
C12	0.3085 (9)	0.4063 (7)	-0.4800 (7)	0.045 (3)
C13	0.3647 (7)	0.2886 (7)	-0.4586 (6)	0.029 (2)
C14	0.3545 (6)	0.1889 (6)	-0.5189 (5)	0.0235 (19)
C15	0.6790 (7)	0.3836 (6)	0.0665 (5)	0.031 (2)
C16	0.7822 (7)	0.4492 (7)	0.0935 (6)	0.034 (2)
C17	0.8816 (8)	0.3878 (8)	0.1402 (7)	0.047 (3)
C18	0.9714 (9)	0.4597 (9)	0.1617 (9)	0.057 (3)
C19	0.9565 (8)	0.5869 (8)	0.1416 (8)	0.049 (3)
C20	0.8519 (8)	0.6423 (7)	0.0988 (6)	0.037 (2)
C21	0.8212 (8)	0.7801 (8)	0.0811 (7)	0.043 (3)
017	0.1654 (11)	0.9097 (12)	0.0235 (15)	0.203 (8)
O18	0.0497 (18)	0.4499 (17)	0.4043 (14)	0.262 (11)
H3	-0.06240	-0.18810	0.47480	0.0590*
H4	-0.14450	-0.06660	0.33500	0.0730*
Н5	-0.01690	0.08680	0.21480	0.0570*
H10	0.40520	0.51580	-0.30040	0.0490*
H11	0.28900	0.57330	-0.43500	0.0680*
H12	0.26060	0.42700	-0.53310	0.0530*
H13A	0.60750	0.22650	0.27140	0.0510*
H13B	0.63440	0.18290	0.37070	0.0510*

H14A	0.67250	0.07070	0.18120	0.0670*
H14B	0.70090	-0.05880	0.17820	0.0670*
H15A	0.38940	0.46430	0.19540	0.0620*
H15B	0.32620	0.35990	0.25900	0.0620*
H16A	0.55550	0.09510	-0.08010	0.0640*
H16B	0.64370	0.13440	-0.03160	0.0640*
H17	0.88720	0.30080	0.15640	0.0560*
H18	1.04150	0.42180	0.18960	0.0690*
H19	1.01600	0.63630	0.15650	0.0590*
H17A	0.15910	0.98620	0.01620	0.3010*
H17B	0.12280	0.88870	-0.01490	0.3010*
H18A	0.00000	0.44490	0.36500	0.3970*
H18B	0.01520	0.40770	0.46880	0.3970*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	0.0260 (3)	0.0196 (2)	0.0178 (3)	0.0006 (2)	-0.0064 (2)	-0.0041 (2)
La2	0.0369 (3)	0.0184 (3)	0.0199 (3)	-0.0007 (2)	-0.0063 (2)	-0.0032 (2)
01	0.033 (3)	0.031 (3)	0.037 (3)	-0.008 (2)	-0.018 (2)	0.007 (2)
02	0.040 (3)	0.046 (3)	0.047 (4)	-0.008 (3)	-0.002 (3)	0.017 (3)
O3	0.027 (2)	0.028 (3)	0.026 (3)	0.001 (2)	-0.0075 (19)	-0.003 (2)
O4	0.037 (3)	0.037 (3)	0.037 (3)	0.010 (2)	-0.008 (2)	0.008 (2)
05	0.074 (4)	0.021 (3)	0.044 (3)	-0.005 (3)	-0.021 (3)	0.003 (2)
O6	0.046 (3)	0.024 (3)	0.031 (3)	-0.001 (2)	-0.017 (2)	-0.002 (2)
07	0.051 (3)	0.033 (3)	0.028 (3)	-0.004 (2)	-0.012 (2)	-0.013 (2)
08	0.046 (3)	0.028 (3)	0.028 (3)	0.006 (2)	-0.018 (2)	-0.011 (2)
09	0.060 (4)	0.046 (4)	0.148 (8)	-0.008 (3)	-0.043 (5)	-0.022 (4)
O10	0.044 (3)	0.030 (3)	0.049 (3)	-0.001 (2)	-0.012 (3)	-0.017 (2)
O11	0.029 (2)	0.029 (3)	0.022 (2)	-0.001 (2)	-0.005 (2)	-0.009 (2)
O12	0.046 (3)	0.040 (3)	0.030 (3)	0.003 (2)	-0.020 (2)	-0.004 (2)
O13	0.058 (3)	0.047 (3)	0.024 (3)	-0.025 (3)	-0.012 (2)	-0.001 (2)
O14	0.049 (3)	0.041 (3)	0.037 (3)	-0.001 (3)	0.008 (3)	-0.012 (3)
O15	0.097 (5)	0.028 (3)	0.026 (3)	-0.013 (3)	-0.002 (3)	-0.007 (2)
O16	0.087 (5)	0.043 (3)	0.040 (3)	0.023 (3)	-0.030 (3)	-0.021 (3)
N1	0.029 (3)	0.026 (3)	0.026 (3)	-0.001 (2)	-0.004 (2)	-0.004 (2)
N2	0.030 (3)	0.021 (3)	0.021 (3)	0.001 (2)	-0.007 (2)	-0.006 (2)
N3	0.038 (3)	0.024 (3)	0.027 (3)	0.005 (3)	-0.009 (3)	-0.007 (3)
C1	0.044 (4)	0.023 (4)	0.024 (4)	0.004 (3)	-0.004 (3)	-0.001 (3)
C2	0.026 (3)	0.027 (4)	0.035 (4)	-0.001 (3)	-0.003 (3)	0.000 (3)
C3	0.035 (4)	0.046 (5)	0.057 (6)	-0.005 (4)	-0.012 (4)	0.013 (4)
C4	0.022 (4)	0.073 (6)	0.078 (7)	-0.013 (4)	-0.020 (4)	0.022 (5)
C5	0.035 (4)	0.054 (5)	0.048 (5)	0.006 (4)	-0.015 (4)	0.010 (4)
C6	0.029 (4)	0.025 (4)	0.032 (4)	0.006 (3)	-0.009 (3)	-0.001 (3)
C7	0.035 (4)	0.025 (4)	0.024 (4)	0.004 (3)	-0.011 (3)	-0.002 (3)
C8	0.041 (4)	0.028 (4)	0.025 (4)	-0.010 (3)	-0.003 (3)	-0.011 (3)
C9	0.032 (4)	0.028 (4)	0.027 (4)	0.001 (3)	-0.001 (3)	-0.010 (3)
C10	0.061 (5)	0.025 (4)	0.037 (4)	0.007 (4)	-0.012 (4)	-0.010 (3)

C11	0.092 (7)	0.025 (4)	0.060 (6)	0.025 (4)	-0.033 (5)	-0.016 (4)
C12	0.060 (5)	0.034 (4)	0.043 (5)	0.016 (4)	-0.024 (4)	-0.005 (4)
C13	0.032 (4)	0.030 (4)	0.025 (4)	0.004 (3)	-0.007 (3)	-0.008 (3)
C14	0.023 (3)	0.026 (4)	0.021 (3)	0.002 (3)	-0.006 (3)	-0.003 (3)
C15	0.045 (4)	0.024 (4)	0.021 (4)	-0.001 (3)	-0.003 (3)	-0.006 (3)
C16	0.036 (4)	0.034 (4)	0.032 (4)	0.005 (3)	-0.006 (3)	-0.008 (3)
C17	0.057 (5)	0.030 (4)	0.055 (5)	0.011 (4)	-0.024 (4)	-0.004 (4)
C18	0.051 (5)	0.047 (5)	0.083 (7)	0.014 (4)	-0.038 (5)	-0.014 (5)
C19	0.044 (5)	0.047 (5)	0.064 (6)	0.001 (4)	-0.022 (4)	-0.016 (4)
C20	0.041 (4)	0.039 (4)	0.035 (4)	0.003 (3)	-0.011 (3)	-0.012 (4)
C21	0.041 (4)	0.039 (4)	0.053 (5)	-0.009 (4)	-0.010 (4)	-0.014 (4)
017	0.079 (7)	0.110 (9)	0.37 (2)	0.004 (6)	0.030 (10)	-0.030 (12)
O18	0.26 (2)	0.29 (2)	0.244 (18)	-0.205 (18)	-0.175 (17)	0.126 (17)

Geometric parameters (Å, °)

La1—N1	2.644 (5)	O16—H16B	0.8500
La1—N2 ⁱ	2.728 (6)	O17—H17A	0.8200
La1—O1	2.502 (5)	O17—H17B	0.8200
La1—O3	2.614 (5)	O18—H18A	0.8200
La1—O8 ⁱ	2.575 (5)	O18—H18B	0.8800
La1—O11 ⁱ	2.578 (5)	N1—C2	1.347 (9)
La1—O11 ⁱⁱ	2.600 (5)	N1—C6	1.333 (9)
La1—O13	2.593 (5)	N2—C13	1.348 (9)
La1—O14	2.525 (5)	N2—C9	1.334 (9)
La2—N3 ⁱⁱⁱ	2.688 (6)	N3—C16	1.342 (10)
La2—O3	2.674 (5)	N3—C20	1.334 (10)
La2—O4	2.605 (5)	C1—C2	1.520 (11)
La2—O5	2.865 (6)	C2—C3	1.388 (12)
La2—O6	2.591 (5)	C3—C4	1.379 (13)
La2—O6 ⁱⁱⁱ	2.615 (5)	C4—C5	1.366 (14)
La2—O7	2.524 (5)	C5—C6	1.385 (12)
La2—O10 ⁱⁱⁱ	2.539 (5)	C6—C7	1.492 (10)
La2—O15	2.574 (5)	C8—C9	1.503 (11)
La2—O16	2.575 (6)	C9—C10	1.392 (11)
O1—C1	1.273 (9)	C10-C11	1.379 (13)
O2—C1	1.231 (10)	C11—C12	1.379 (13)
O3—C7	1.282 (9)	C12—C13	1.378 (11)
O4—C7	1.237 (9)	C13—C14	1.495 (10)
O5—C15	1.245 (9)	C15—C16	1.483 (11)
O6—C15	1.277 (9)	C16—C17	1.391 (12)
O7—C8	1.256 (9)	C17—C18	1.378 (13)
O8—C8	1.259 (9)	C18—C19	1.363 (14)
O9—C21	1.228 (11)	C19—C20	1.390 (12)
O10—C21	1.290 (10)	C20—C21	1.498 (12)
O11—C14	1.281 (8)	С3—Н3	0.9300
O12—C14	1.239 (8)	C4—H4	0.9300
O13—H13B	0.8500	С5—Н5	0.9300

O13—H13A	0.8500	C10—H10	0.9300
O14—H14A	0.9700	C11—H11	0.9300
O14—H14B	0.8300	C12—H12	0.9300
O15—H15B	0.8500	C17—H17	0.9300
O15—H15A	0.8500	C18—H18	0.9300
O16—H16A	0.8500	С19—Н19	0.9300
01—La1—O3	122.79 (16)	La1 ⁱ —O8—C8	127.8 (5)
O1—La1—O13	138.55 (16)	La2 ⁱⁱⁱ —O10—C21	122.7 (5)
01—La1—014	144.85 (18)	La1 ^{iv} —O11—C14	102.4 (4)
O1—La1—N1	61.51 (17)	La1 ⁱ —O11—C14	128.0 (4)
O1—La1—O11 ⁱⁱ	72.38 (16)	La1 ^{iv} —O11—La1 ⁱ	118.03 (17)
O1—La1—O8 ⁱ	82.61 (17)	H13A—O13—H13B	108.00
O1—La1—O11 ⁱ	79.37 (16)	La1—O13—H13A	125.00
O1—La1—N2 ⁱ	70.50 (17)	La1—O13—H13B	126.00
O3—La1—O13	83.61 (15)	H14A—O14—H14B	105.00
O3—La1—O14	75.24 (16)	La1—O14—H14A	104.00
O3—La1—N1	61.30 (15)	La1—O14—H14B	130.00
O3—La1—O11 ⁱⁱ	111.02 (14)	H15A—O15—H15B	108.00
O3—La1—O8 ⁱ	78.74 (15)	La2—O15—H15A	115.00
O3—La1—O11 ⁱ	155.18 (14)	La2—O15—H15B	126.00
O3—La1—N2 ⁱ	134.90 (15)	H16A—O16—H16B	108.00
O13—La1—O14	66.84 (17)	La2—O16—H16A	117.00
O13—La1—N1	130.64 (17)	La2—O16—H16B	110.00
O11 ⁱⁱ —La1—O13	68.07 (15)	H17A—O17—H17B	108.00
08 ⁱ —La1—O13	137.30 (16)	H18A—O18—H18B	108.00
O11 ⁱ —La1—O13	71.66 (15)	La1—N1—C6	121.0 (4)
O13—La1—N2 ⁱ	115.33 (17)	C2—N1—C6	118.9 (6)
O14—La1—N1	126.86 (16)	La1—N1—C2	120.0 (4)
O11 ⁱⁱ —La1—O14	133.32 (16)	La1 ⁱ —N2—C13	121.0 (4)
O8 ⁱ —La1—O14	71.15 (17)	La1 ⁱ —N2—C9	120.7 (4)
011 ⁱ —La1—O14	92.63 (16)	C9—N2—C13	118.1 (6)
O14—La1—N2 ⁱ	76.04 (16)	La2 ⁱⁱⁱ —N3—C20	119.1 (5)
O11 ⁱⁱ —La1—N1	92.06 (15)	C16—N3—C20	118.4 (7)
O8 ⁱ —La1—N1	71.66 (17)	La2 ⁱⁱⁱ —N3—C16	122.5 (5)
O11 ⁱ —La1—N1	138.66 (15)	O2—C1—C2	118.6 (7)
N1—La1—N2 ⁱ	114.03 (17)	O1—C1—O2	125.8 (7)
O8 ⁱ —La1—O11 ⁱⁱ	154.60 (15)	O1—C1—C2	115.7 (6)
O11 ⁱⁱ —La1—O11 ⁱ	61.97 (14)	N1—C2—C1	114.6 (6)
O11 ⁱⁱ —La1—N2 ⁱ	114.01 (15)	N1—C2—C3	121.8 (7)
O8 ⁱ —La1—O11 ⁱ	118.28 (15)	C1—C2—C3	123.5 (7)
O8 ⁱ —La1—N2 ⁱ	59.34 (16)	C2—C3—C4	118.3 (8)
O11 ⁱ —La1—N2 ⁱ	58.97 (15)	C3—C4—C5	119.9 (8)
O3—La2—O4	49.45 (15)	C4—C5—C6	118.9 (8)

O3—La2—O5	76.72 (15)	C5—C6—C7	122.8 (7)
O3—La2—O6	121.38 (15)	N1—C6—C5	122.1 (7)
O3—La2—O7	142.63 (16)	N1—C6—C7	115.1 (6)
O3—La2—O15	69.42 (16)	O3—C7—O4	122.5 (6)
O3—La2—O16	73.31 (17)	O4—C7—C6	120.0 (7)
O3—La2—O6 ¹¹¹	134.20 (15)	O3—C7—C6	117.5 (6)
O3—La2—O10 ⁱⁱⁱ	85.13 (15)	O8—C8—C9	116.5 (7)
O3—La2—N3 ⁱⁱⁱ	121.02 (16)	O7—C8—O8	125.4 (7)
O4—La2—O5	121.66 (17)	O7—C8—C9	118.1 (7)
O4—La2—O6	146.54 (16)	N2—C9—C10	122.6 (7)
O4—La2—O7	136.93 (17)	N2—C9—C8	114.5 (6)
O4—La2—O15	72.17 (19)	C8—C9—C10	122.9 (7)
O4—La2—O16	109.57 (19)	C9—C10—C11	118.4 (7)
O4—La2—O6 ⁱⁱⁱ	101.96 (17)	C10—C11—C12	119.6 (8)
O4—La2—O10 ⁱⁱⁱ	66.56 (16)	C11—C12—C13	118.7 (8)
O4—La2—N3 ⁱⁱⁱ	72.45 (18)	C12—C13—C14	122.8 (7)
O5—La2—O6	47.20 (16)	N2-C13-C14	114.6 (6)
O5—La2—O7	98.49 (18)	N2-C13-C12	122.7 (7)
O5—La2—O15	68.8 (2)	O11—C14—C13	115.7 (6)
O5—La2—O16	65.89 (19)	O11—C14—O12	122.5 (6)
O5—La2—O6 ⁱⁱⁱ	101.06 (16)	O12—C14—C13	121.8 (6)
O5—La2—O10 ⁱⁱⁱ	137.38 (17)	O5—C15—O6	121.2 (7)
O5—La2—N3 ⁱⁱⁱ	159.07 (17)	O5—C15—C16	122.6 (7)
O6—La2—O7	72.46 (17)	O6—C15—C16	116.1 (6)
O6—La2—O15	74.76 (19)	C15—C16—C17	123.7 (7)
O6—La2—O16	93.97 (19)	N3—C16—C17	122.7 (7)
O6—La2—O6 ⁱⁱⁱ	59.73 (16)	N3—C16—C15	113.5 (6)
O6—La2—O10 ⁱⁱⁱ	145.86 (16)	C16—C17—C18	118.1 (8)
O6—La2—N3 ⁱⁱⁱ	112.19 (17)	C17—C18—C19	119.4 (9)
O7—La2—O15	143.95 (18)	C18—C19—C20	119.7 (8)
O7—La2—O16	71.09 (19)	C19—C20—C21	123.9 (8)
O6 ⁱⁱⁱ —La2—O7	83.17 (17)	N3—C20—C21	114.5 (7)
O7—La2—O10 ⁱⁱⁱ	73.54 (17)	N3—C20—C19	121.7 (7)
O7—La2—N3 ⁱⁱⁱ	74.28 (18)	O9—C21—C20	119.5 (8)
O15—La2—O16	126.2 (2)	O9—C21—O10	124.6 (8)
O6 ⁱⁱⁱ —La2—O15	67.46 (16)	O10—C21—C20	115.8 (7)
O10 ⁱⁱⁱ —La2—O15	138.7 (2)	С2—С3—Н3	121.00
O15—La2—N3 ⁱⁱⁱ	105.3 (2)	С4—С3—Н3	121.00
O6 ⁱⁱⁱ —La2—O16	148.18 (19)	C3—C4—H4	120.00
O10 ⁱⁱⁱ —La2—O16	72.1 (2)	С5—С4—Н4	120.00
O16—La2—N3 ⁱⁱⁱ	127.1 (2)	С4—С5—Н5	121.00
O6 ⁱⁱⁱ —La2—O10 ⁱⁱⁱ	118.78 (17)	С6—С5—Н5	120.00
O6 ⁱⁱⁱ —La2—N3 ⁱⁱⁱ	59.01 (17)	С11—С10—Н10	121.00
O10 ⁱⁱⁱ —La2—N3 ⁱⁱⁱ	60.36 (17)	С9—С10—Н10	121.00

La1—O1—C1	127.8 (5)	C10-C11-H11	120.00
La1—O3—La2	143.82 (18)	C12—C11—H11	120.00
La1—O3—C7	121.3 (4)	C11—C12—H12	121.00
La2—O3—C7	91.7 (4)	C13—C12—H12	121.00
La2—O4—C7	96.0 (4)	C18—C17—H17	121.00
La2—O5—C15	89.2 (5)	С16—С17—Н17	121.00
La2—O6—C15	101.4 (4)	C17—C18—H18	120.00
La2—O6—La2 ¹¹¹	120.3 (2)	C19—C18—H18	120.00
La2 ⁱⁱⁱ —O6—C15	124.5 (4)	C20—C19—H19	120.00
La2—O7—C8	126.9 (5)	C18—C19—H19	120.00
O3—La1—O1—C1	2.6 (7)	N3 ⁱⁱⁱ —La2—O7—C8	-87.9 (6)
O13—La1—O1—C1	124.6 (6)	O3—La2—O6 ⁱⁱⁱ —La2 ⁱⁱⁱ	105.9 (2)
O14—La1—O1—C1	-110.3 (6)	O3—La2—O6 ⁱⁱⁱ —C15 ⁱⁱⁱ	-121.3 (5)
N1—La1—O1—C1	4.2 (6)	O4—La2—O6 ⁱⁱⁱ —La2 ⁱⁱⁱ	149.7 (2)
O11 ⁱⁱ —La1—O1—C1	106.7 (6)	O4—La2—O6 ⁱⁱⁱ —C15 ⁱⁱⁱ	-77.5 (5)
O8 ⁱ —La1—O1—C1	-68.9 (6)	O5—La2—O6 ⁱⁱⁱ —La2 ⁱⁱⁱ	23.7 (2)
O11 ⁱ —La1—O1—C1	170.4 (6)	O5—La2—O6 ⁱⁱⁱ —C15 ⁱⁱⁱ	156.5 (5)
N2 ⁱ —La1—O1—C1	-128.9 (6)	O6—La2—O6 ⁱⁱⁱ —La2 ⁱⁱⁱ	0.02 (17)
O1—La1—O3—La2	168.6 (3)	06—La2—O6 ⁱⁱⁱ —C15 ⁱⁱⁱ	132.8 (6)
O1—La1—O3—C7	15.8 (5)	O7—La2—O6 ⁱⁱⁱ —La2 ⁱⁱⁱ	-73.7 (2)
O13—La1—O3—La2	23.0 (3)	O7—La2—O6 ⁱⁱⁱ —C15 ⁱⁱⁱ	59.1 (5)
O13—La1—O3—C7	-129.8 (5)	O15—La2—O6 ⁱⁱⁱ —La2 ⁱⁱⁱ	85.0 (3)
O14—La1—O3—La2	-44.7 (3)	O15—La2—O6 ⁱⁱⁱ —C15 ⁱⁱⁱ	-142.2 (6)
O14—La1—O3—C7	162.6 (5)	O16—La2—O6 ⁱⁱⁱ —La2 ⁱⁱⁱ	-38.0 (5)
N1—La1—O3—La2	167.0 (4)	O16—La2—O6 ⁱⁱⁱ —C15 ⁱⁱⁱ	94.8 (6)
N1—La1—O3—C7	14.2 (4)	O3—La2—O10 ⁱⁱⁱ —C21 ⁱⁱⁱ	104.9 (6)
O11 ⁱⁱ —La1—O3—La2	86.5 (3)	O4—La2—O10 ⁱⁱⁱ —C21 ⁱⁱⁱ	57.3 (6)
O11 ⁱⁱ —La1—O3—C7	-66.2 (5)	O5—La2—O10 ⁱⁱⁱ —C21 ⁱⁱⁱ	169.2 (5)
O8 ⁱ —La1—O3—La2	-117.9 (3)	O6—La2—O10 ⁱⁱⁱ —C21 ⁱⁱⁱ	-111.4 (6)
O8 ⁱ —La1—O3—C7	89.3 (5)	O7—La2—O10 ⁱⁱⁱ —C21 ⁱⁱⁱ	-106.1 (6)
O11 ⁱ —La1—O3—La2	18.2 (6)	O15—La2—O10 ⁱⁱⁱ —C21 ⁱⁱⁱ	54.0 (7)
O11 ⁱ —La1—O3—C7	-134.6 (5)	O16—La2—O10 ⁱⁱⁱ —C21 ⁱⁱⁱ	178.9 (6)
N2 ⁱ —La1—O3—La2	-96.7 (3)	O3—La2—N3 ⁱⁱⁱ —C16 ⁱⁱⁱ	130.4 (5)
N2 ⁱ —La1—O3—C7	110.5 (5)	O3—La2—N3 ⁱⁱⁱ —C20 ⁱⁱⁱ	-47.7 (6)
O1—La1—N1—C2	-6.0 (5)	O4—La2—N3 ⁱⁱⁱ —C16 ⁱⁱⁱ	120.7 (6)
O1—La1—N1—C6	179.1 (6)	O4—La2—N3 ⁱⁱⁱ —C20 ⁱⁱⁱ	-57.4 (5)
O3—La1—N1—C2	172.4 (5)	O5—La2—N3 ⁱⁱⁱ —C16 ⁱⁱⁱ	-14.9 (9)
O3—La1—N1—C6	-2.5 (5)	O5—La2—N3 ⁱⁱⁱ —C20 ⁱⁱⁱ	167.0 (5)
013—La1—N1—C2	-137.2 (5)	06—La2—N3 ⁱⁱⁱ —C16 ⁱⁱⁱ	-24.0 (6)
O13—La1—N1—C6	48.0 (6)	06—La2—N3 ⁱⁱⁱ —C20 ⁱⁱⁱ	157.9 (5)
O14—La1—N1—C2	133.1 (5)	07—La2—N3 ⁱⁱⁱ —C16 ⁱⁱⁱ	-87.1 (6)
O14—La1—N1—C6	-41.8 (6)	O7—La2—N3 ⁱⁱⁱ —C20 ⁱⁱⁱ	94.9 (6)

O11 ⁱⁱ —La1—N1—C2	-74.7 (5)	O15—La2—N3 ⁱⁱⁱ —C16 ⁱⁱⁱ	55.5 (6)
O11 ⁱⁱ —La1—N1—C6	110.5 (5)	O15—La2—N3 ⁱⁱⁱ —C20 ⁱⁱⁱ	-122.6 (5)
O8 ⁱ —La1—N1—C2	85.5 (5)	O16—La2—N3 ⁱⁱⁱ —C16 ⁱⁱⁱ	-137.7 (5)
O8 ⁱ —La1—N1—C6	-89.4 (5)	O16—La2—N3 ⁱⁱⁱ —C20 ⁱⁱⁱ	44.3 (6)
O11 ⁱ —La1—N1—C2	-26.8 (6)	La1—O1—C1—O2	178.3 (6)
O11 ⁱ —La1—N1—C6	158.3 (5)	La1—O1—C1—C2	-2.2 (9)
N2 ⁱ —La1—N1—C2	42.9 (5)	La1—O3—C7—O4	158.7 (5)
N2 ⁱ —La1—N1—C6	-132.0 (5)	La1—O3—C7—C6	-23.8 (8)
O1-La1-O11 ⁱⁱ -C14 ⁱⁱ	-126.6 (4)	La2—O3—C7—O4	-5.6 (7)
O3—La1—O11 ⁱⁱ —C14 ⁱⁱ	-7.4 (4)	La2—O3—C7—C6	171.9 (5)
O13—La1—O11 ⁱⁱ —C14 ⁱⁱ	66.1 (4)	La2—O4—C7—O3	5.8 (7)
O14—La1—O11 ⁱⁱ —C14 ⁱⁱ	81.8 (4)	La2—O4—C7—C6	-171.6 (5)
N1—La1—O11 ⁱⁱ —C14 ⁱⁱ	-67.4 (4)	La2-05-C15-06	-9.7 (7)
O1—La1—O8 ⁱ —C8 ⁱ	-79.6 (6)	La2—O5—C15—C16	166.9 (6)
O3—La1—O8 ⁱ —C8 ⁱ	154.8 (6)	La2—O6—C15—O5	11.0 (7)
$O13$ —La1— $O8^{i}$ — $C8^{i}$	87.3 (6)	La2—O6—C15—C16	-165.8 (5)
$O14$ —La1— $O8^{i}$ — $C8^{i}$	76.7 (6)	La2 ⁱⁱⁱ —O6—C15—O5	150.7 (5)
N1—La1— $O8^{i}$ — $C8^{i}$	-141.9 (6)	$La2^{iii}$ —O6—C15—C16	-26.1 (8)
$O1-La1-O11^{i}-C14^{i}$	61.0 (5)	La2—07—C8—08	-67.8 (10)
$O3-La1-O11^{i}-C14^{i}$	-144.0 (5)	La2—07—C8—C9	111.4 (7)
$O13$ —La1— $O11^{i}$ —C14 ⁱ	-149.1 (5)	Lal ⁱ —O8—C8—O7	165.7 (5)
$O14$ —La1— $O11^{i}$ — $C14^{i}$	-84.5 (5)	La1 ⁱ —O8—C8—C9	-13.5 (9)
$N1-La1-O11^{i}-C14^{i}$	79.5 (6)	La ²ⁱⁱⁱ —O10—C21—O9	150.6 (8)
$O1$ —La1— $N2^{i}$ — $C9^{i}$	93.4 (5)	La ²ⁱⁱⁱ —O10—C21—C20	-32.3 (9)
$O1$ —La1— $N2^{i}$ — $C13^{i}$	-81.9 (5)	La1 ^{iv} —O11—C14—O12	20.2 (7)
$O3$ —La1— $N2^{i}$ — $C9^{i}$	-23.9 (6)	La1 ^{iv} —O11—C14—C13	-157.4 (5)
$O3-La1-N2^{i}-C13^{i}$	160.9 (5)	La1 ⁱ -011-C14-012	161.8 (5)
$O13-La1-N2^{i}-C9^{i}$	-131.2 (5)	La1 ⁱ -011-C14-C13	-15.8 (8)
O13—La1—N2 ⁱ —C13 ⁱ	53.5 (5)	La1—N1—C2—C1	7.4 (8)
O14—La1—N2 ⁱ —C9 ⁱ	-75.7 (5)	La1—N1—C2—C3	-173.0 (6)
O14—La1—N2 ⁱ —C13 ⁱ	109.1 (5)	C6—N1—C2—C1	-177.6 (6)
N1—La1—N2 ⁱ —C9 ⁱ	48.8 (5)	C6—N1—C2—C3	2.0 (10)
N1—La1—N2 ⁱ —C13 ⁱ	-126.5 (5)	La1—N1—C6—C5	173.3 (6)
O4—La2—O3—La1	-154.0 (4)	La1—N1—C6—C7	-7.1 (8)
O4—La2—O3—C7	3.0 (4)	C2—N1—C6—C5	-1.7 (11)
O5—La2—O3—La1	1.7 (3)	C2—N1—C6—C7	178.0 (6)
O5—La2—O3—C7	158.7 (4)	C13—N2—C9—C8	179.7 (6)
06—La2—O3—La1	-14.2 (4)	C13—N2—C9—C10	1.4 (11)
06—La2—O3—C7	142.8 (4)	La1 ¹ —N2—C9—C8	-4.9 (8)
O7—La2—O3—La1	88.4 (4)	La1 ¹ —N2—C9—C10	176.8 (6)
07—La2—O3—C7	-114.7 (4)	C9-N2-C13-C12	-1.4 (11)
015—La2—03—La1	-70.3(3)	C9—N2—C13—C14	1 /8.9 (6)

O15—La2—O3—C7	86.7 (4)	La1 ⁱ —N2—C13—C12	-176.8 (6)
O16—La2—O3—La1	70.2 (3)	La1 ⁱ —N2—C13—C14	3.5 (8)
O16—La2—O3—C7	-132.8 (4)	C20—N3—C16—C15	176.8 (6)
O6 ⁱⁱⁱ —La2—O3—La1	-90.9 (4)	C20—N3—C16—C17	-0.7 (11)
O6 ⁱⁱⁱ —La2—O3—C7	66.1 (4)	La2 ⁱⁱⁱ —N3—C16—C15	-5.1 (8)
O10 ⁱⁱⁱ —La2—O3—La1	142.9 (3)	La2 ⁱⁱⁱ —N3—C16—C17	177.4 (6)
O10 ⁱⁱⁱ —La2—O3—C7	-60.1 (4)	C16—N3—C20—C19	3.4 (11)
N3 ⁱⁱⁱ —La2—O3—La1	-166.2 (3)	C16—N3—C20—C21	-175.0 (7)
N3 ⁱⁱⁱ —La2—O3—C7	-9.2 (4)	La2 ⁱⁱⁱ —N3—C20—C19	-174.8 (6)
O3—La2—O4—C7	-3.1 (4)	La2 ⁱⁱⁱ —N3—C20—C21	6.9 (9)
O5—La2—O4—C7	-31.1 (5)	O1—C1—C2—N1	-3.7 (9)
O6—La2—O4—C7	-90.1 (5)	O1—C1—C2—C3	176.6 (7)
O7—La2—O4—C7	125.0 (4)	O2—C1—C2—N1	175.9 (7)
O15—La2—O4—C7	-80.9 (4)	O2—C1—C2—C3	-3.8 (11)
O16—La2—O4—C7	42.1 (4)	N1—C2—C3—C4	0.2 (12)
O6 ⁱⁱⁱ —La2—O4—C7	-142.2 (4)	C1—C2—C3—C4	179.8 (8)
O10 ⁱⁱⁱ —La2—O4—C7	101.4 (4)	C2—C3—C4—C5	-2.8 (14)
N3 ⁱⁱⁱ —La2—O4—C7	166.0 (4)	C3—C4—C5—C6	3.2 (15)
O3—La2—O5—C15	-155.8 (4)	C4—C5—C6—N1	-1.0 (13)
O4—La2—O5—C15	-134.3 (4)	C4—C5—C6—C7	179.5 (8)
O6—La2—O5—C15	5.6 (4)	N1—C6—C7—O3	20.1 (9)
O7—La2—O5—C15	62.0 (4)	N1C6C7O4	-162.4 (6)
O15—La2—O5—C15	-83.0 (4)	C5—C6—C7—O3	-160.3 (7)
O16—La2—O5—C15	126.8 (5)	C5—C6—C7—O4	17.3 (11)
06 ⁱⁱⁱ —La2—O5—C15	-22.7 (4)	O7—C8—C9—N2	-168.0 (7)
O10 ⁱⁱⁱ —La2—O5—C15	136.9 (4)	O7—C8—C9—C10	10.2 (11)
N3 ⁱⁱⁱ —La2—O5—C15	-5.9 (8)	08—C8—C9—N2	11.2 (10)
O3—La2—O6—C15	15.8 (4)	O8—C8—C9—C10	-170.6 (7)
O3—La2—O6—La2 ⁱⁱⁱ	-126.1 (2)	N2-C9-C10-C11	-1.3 (12)
O4—La2—O6—C15	78.5 (5)	C8—C9—C10—C11	-179.4 (8)
O4—La2—O6—La2 ⁱⁱⁱ	-63.4 (4)	C9-C10-C11-C12	1.1 (14)
O5—La2—O6—C15	-5.5 (4)	C10-C11-C12-C13	-1.1 (14)
O5—La2—O6—La2 ⁱⁱⁱ	-147.5 (3)	C11—C12—C13—N2	1.3 (13)
O7—La2—O6—C15	-125.8 (4)	C11—C12—C13—C14	-179.0 (8)
O7—La2—O6—La2 ⁱⁱⁱ	92.3 (2)	N2-C13-C14-O11	6.8 (9)
O15—La2—O6—C15	69.4 (4)	N2-C13-C14-O12	-170.8 (6)
O15—La2—O6—La2 ⁱⁱⁱ	-72.5 (2)	C12—C13—C14—O11	-172.9 (7)
O16—La2—O6—C15	-57.1 (4)	C12—C13—C14—O12	9.5 (11)
O16—La2—O6—La2 ⁱⁱⁱ	161.0 (2)	O5-C15-C16-N3	-157.5 (7)
O6 ⁱⁱⁱ —La2—O6—C15	141.9 (4)	O5-C15-C16-C17	19.9 (12)
O6 ⁱⁱⁱ —La2—O6—La2 ⁱⁱⁱ	-0.02 (18)	06-C15-C16-N3	19.3 (9)
O10 ⁱⁱⁱ —La2—O6—C15	-120.5 (4)	O6-C15-C16-C17	-163.3 (7)
O10 ⁱⁱⁱ —La2—O6—La2 ⁱⁱⁱ	97.6 (3)	N3—C16—C17—C18	-2.6 (13)
N3 ⁱⁱⁱ —La2—O6—C15	170.0 (4)	C15—C16—C17—C18	-179.8 (8)

N3 ⁱⁱⁱ —La2—O6—La2 ⁱⁱⁱ	28.1 (3)	C16—C17—C18—C19	3.1 (14)
O3—La2—O7—C8	33.0 (7)	C17—C18—C19—C20	-0.6 (15)
O4—La2—O7—C8	-47.3 (7)	C18—C19—C20—N3	-2.7 (14)
O5—La2—O7—C8	112.3 (6)	C18—C19—C20—C21	175.5 (9)
O6—La2—O7—C8	152.1 (6)	N3—C20—C21—O9	-167.8 (9)
O15—La2—O7—C8	177.6 (6)	N3-C20-C21-O10	15.0 (10)
O16—La2—O7—C8	51.5 (6)	C19—C20—C21—O9	13.9 (14)
O6 ⁱⁱⁱ —La2—O7—C8	-147.5 (6)	C19—C20—C21—O10	-163.3 (8)
O10 ⁱⁱⁱ —La2—O7—C8	-24.8 (6)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*, *y*, *z*+1; (iii) -*x*+1, -*y*+1, -*z*; (iv) *x*, *y*, *z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O13—H13A…O5	0.85	2.04	2.766 (8)	143
O13—H13B…O1 ^v	0.85	1.91	2.721 (7)	160
O14—H14A…O5	0.97	2.23	3.062 (8)	143
O14—H14B····O9 ^{vi}	0.83	2.44	3.225 (10)	160
O14—H14B…O10 ^{vi}	0.83	2.22	2.712 (8)	119
O15—H15A…O7 ⁱⁱⁱ	0.85	2.14	2.948 (8)	160
O15—H15B…O12 ⁱⁱ	0.85	2.16	2.849 (7)	138
O16—H16A…O8	0.85	2.12	2.760 (8)	132
O16—H16B…O17 ⁱⁱⁱ	0.85	2.05	2.843 (15)	155
O17—H17A····O9 ^{vii}	0.82	2.13	2.816 (17)	141
O17—H17B····O9 ^{viii}	0.82	2.39	2.758 (15)	108
O18—H18A····O2 ^{ix}	0.82	2.31	2.75 (2)	114
O18—H18B…O18 ^x	0.88	2.46	2.89 (3)	110
C11—H11···O2 ^{xi}	0.93	2.45	3.320 (11)	155
C12—H12····O18 ^{iv}	0.93	2.51	3.36 (2)	152

Symmetry codes: (v) -*x*+1, -*y*, -*z*+1; (vi) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*+1, -*z*; (ii) *x*, *y*, *z*+1; (vii) -*x*+1, -*y*+2, -*z*; (viii) *x*-1, *y*, *z*; (ix) -*x*, -*y*, -*z*+1; (x) -*x*, -*y*+1, -*z*+1; (xi) *x*, *y*+1, *z*-1; (iv) *x*, *y*, *z*-1.

Fig. 1

Fig. 2

Fig. 3